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The visual system performs a remarkable feat: it takes complex reti-
nal activation patterns and decodes them for object recognition. This
operation, termed “representational untangling,” organizes neural rep-
resentations by clustering similar objects together while separating
different categories of objects. While representational untangling is usu-
ally associated with higher-order visual areas like the inferior temporal
cortex, it remains unclear how the early visual system contributes to this
process—whether through highly selective neurons or high-dimensional
population codes. This article investigates how a computational model
of early vision contributes to representational untangling. Using a
computational visual hierarchy and two different data sets consisting
of numerals and objects, we demonstrate that simulated complex cells
significantly contribute to representational untangling for object recog-
nition. Our findings challenge prior theories by showing that untangling
does not depend on skewed, sparse, or high-dimensional representa-
tions. Instead, simulated complex cells reformat visual information into
a low-dimensional, yet more separable, neural code, striking a balance
between representational untangling and computational efficiency.

1 Introduction

The visual system processes complex activation patterns on the retina and
categorizes them for object recognition. This feat presents an apparent
paradox. On the one hand, the visual system must be exquisitely sensitive
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to fine details of visual information, such as the tiny brushstrokes of a
painting or the lines in a friend’s expression. On the other hand, it must
be robust or “invariant” to low-level changes, such as lighting, scaling,
translation, rotation, and pose, which change an object’s appearance but
not its identity (DiCarlo & Cox, 2007). It is challenging to simultaneously
achieve both selectivity and invariance.

Object recognition involves a hierarchy of visual processing stages, pro-
gressing from edge detection in primary visual cortex (V1) to shape process-
ing in extrastriate visual cortex (V2 to V4) to object recognition in inferior
temporal cortex (IT; Conway, 2018; Felleman & Van Essen, 1991; Lueschow
et al.,, 1994). These transformations are thought to organize neural repre-
sentations by clustering similar objects together while separating different
objects, a process that has been termed “representational untangling” (see
Figure 1A). Several strategies for representational untangling have been
proposed, including skewed, sparse, and high-dimensional representa-
tions. Biologically plausible learning rules that maximize skewness or
sparseness generate edge detectors that look remarkably like V1 cells
(Albesa-Gonzalez et al., 2022; Blais et al., 1998; Olshausen & Field, 1997),
suggesting that the visual system might rely on skewness or sparseness to
solve object recognition. Conversely, it has been argued that the brain aims
to add dimensions to our neural representation (Bernardi et al., 2020; Fusi
et al., 2016). Such high-dimensional representations allow for many possi-
ble linear decision boundaries, enabling downstream neurons to easily read
out many different kinds of information. This makes high-dimensional
representations useful not just for one task, but for any potential task we
may have to perform.

In this study, we investigate how a computational model of early vision
contributes to object recognition. We test if it makes stimuli more accessible
to linear classification and if it uses skewed, sparse, or high-dimensional
representations to accomplish this. To assess the role of the early visual
system in representational untangling, we use a simplified computational
model of the retina, lateral geniculate nucleus (LGN), simple cells and com-
plex cells (see Figure 1B) and show these models two standard data sets of
images, consisting of numerals and objects, respectively (Adelson & Bergen,
1985; Feng et al., 2007; LeCun & Cortes, 2010; Li et al., 2023; Riesenhuber &
Poggio, 1999). We find that the simulated complex cells contribute to the
untangling of object classes, making linear classification easier on the train-
ing data and more robust on the test data. However, this operation does
not rely on any previously proposed mechanism, such as skewed, sparse,
or high-dimensional representations. Instead, it condenses visual informa-
tion to a lower-dimensional code while also making it more accessible to
classification.

Our study follows previous research that demonstrates the impor-
tance of the early visual system for representational untangling. Our work
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Figure 1: Model of the early visual system and concept of untangling. (A)
Demonstrating the concept of untangling using a representation of hand-
written digits (0-9) in 3D space. In a tangled space (left), the representations
of the different digits overlap. In the untangled space (right), the different dig-
its are represented by minimally overlapping clusters. Here each different color
represents a different class. (B) Our model consists of four stages: the retina, lat-
eral geniculate nucleus (LGN), simple cells, and complex cells. Anatomically,
this pathway runs from the eyes, through thalamus, into the back of the brain
at V1. Here, black represents retina, dark purple represents LGN, light purple
represents simple cells, and orange represents complex cells.
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builds on these studies by including multiple levels of the visual hierarchy
and investigating the mechanism behind this representational untangling
(Bergstra et al., 2011; Géspadr et al., 2019; Shams & von der Malsburg, 2002).
Ultimately, we believe our results are complementary to these studies, pro-
viding further evidence that the early visual system is optimized for repre-
sentational untangling rather than maximizing information.

2 Methods

2.1 Model of Early Visual Processing. We simulate the early visual sys-
tem progressing from photoreceptors to the LGN to simple cells and finally
to complex cells (see Figure 1B). Retinal photoreceptors project through reti-
nal ganglion cells to the LGN, which forms circular center-surround re-
ceptive fields with either an excitatory center and an inhibitory surround
(ON cell) or an inhibitory center and excitatory surround (OFF cell) (Kuf-
fler, 1953). LGN then projects to simple cells in V1, which combine several
of these circles together into a line in a particular location and orientation
(Bonin et al., 2005; Jeffries et al., 2014; Lian et al., 2021; Mechler & Ringach,
2002). Finally, complex cells pool together multiple simple cells of the same
orientation but at different locations, responding to a correctly oriented line
regardless of its exact location within the receptive field (see Figure 2A;
Hubel & Wiesel, 1962).

All of these cell types have standardized computational models. Retinal
photoreceptors are modeled by passing the pixel value through a sigmoid
nonlinearity. We call this the “retinal representation.” Meanwhile, retinal
ganglion cells in the LGN can be modeled by the difference of two gaussian
curves, one slightly wider than the other (De Valois et al., 2000; Gabbiani
& Cox, 2010). Here, we used a standard deviation of 1 pixel for the inner
gaussian (0, o} = 1 pixel) and 2 pixels for the outer gaussian (0. o, =
2 pixels). We call this representation the LGN:

1 x2 yZ
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Simple cells can be modeled by a two-dimensional normal curve multi-
plied by a sinusoidal wave, also known as a Gabor filter (Gabbiani & Cox,
2010; Jones & Palmer, 1987). In this study, simple cells were simulated
at eight different orientations, ranging from 6 = 0 radians (horizontal) to
6 = Z radians at ¥ radian intervals. We used a standard deviation of 3 pix-
els (o2, cryz = 3 pixels), a spatial frequency of 0.8 (k = 0.8), and no offset
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Figure 2: Receptive fields at each stage of the visual hierarchy along with cor-
responding neural activations. (A) The visual hierarchy progresses from center-
surround receptive fields (LGN) to edge detectors (V1). Within V1, simple cells
respond to a line at a particular location in the receptive field, whereas complex
cells respond to that line at any location within the receptive field. (B) Examples
from the numerals (top, 0) and objects (bottom, horse) data sets, along with their
corresponding activation maps throughout the visual hierarchy. Here, LGN re-
sponds to bright circles surrounded by a dark ring (ON cells), while simple and
complex cells respond to vertical edges in the image. The simple and complex
cell images are for a single orientation. Our model offers eight orientations.
Black represents retina, dark purple represents LGN, light purple represents
simple cells, and orange represents complex cells.

(¢ = 0 radians).

2 2
(X, y) = 2n0r0, exp (—;TXZ - 2%7;) cos (k (xcos (0) + ysin (9) — ¢)). (2.2)

Finally, complex cells (R.) are modeled by combining two simple cells

with a phase offset of ¢ = % radian and then squared and summed
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(Gabbiani & Cox, 2010; Touryan et al., 2005). These are referred to as “simple
cell: even” (Rs, ¢ = 0 radians) and “simple cell: odd” (Rs, ¢ = % radians).
Again, complex cells were simulated at eight different orientations, ranging
from # = 0 radians (horizontal) to 6 = %” radians at § radian intervals.

Re=R%+R2. (2.3)

Then these neural populations—retina, LGN, simple and complex cells—
were all z-scored (Z) and passed through a sigmoid nonlinearity to obtain
the final activation value (A). For these steps, we used the following equa-
tions, where p is the mean response for each neuron and o is the standard
deviation:

7 — , (2.4)

A= = (2.5)

We exposed this model to two sets of stimuli: MNIST, which consists of
hand-drawn digits 0 to 9, and CIFAR-10, which consists of images of ev-
eryday objects, including planes, cars, and birds (Feng et al., 2007; LeCun
& Cortes, 2010) (see Figure 2B). For each data set, we simulated a cell cen-
tered on every pixel of the input image. The MNIST stimuli, which are 28
by 28 pixels, resulted in 784 simulated LGN cells (28 pixels x 28 pixels) and
6272 simulated simple and complex cells (28 pixels x 28 pixels x 8 angles).
The CIFAR-10 stimuli, which are 32 by 32 pixels, resulted in 1024 simulated
LGN cells (32 pixels x 32 pixels) and 8192 simulated simple and complex
cells (32 pixels x 32 pixels x 8 angles). To obtain the activation values, we
multiplied the receptive field of each neuron by the pixel values at each loca-
tion, z-scored them, and then passed them through a sigmoid nonlinearity.

2.2 Linear decoders. To quantify the untangling of different stimuli,
we used a simple linear decoder: linear discriminant analysis (LDA; Fisher,
1936). We trained a linear decoder on 10,000 examples and tested on 10,000
examples, repeating this analysis 30 times for different training and testing
data sets.

2.3 Statistics. Skewness and kurtosis were computed separately for
each neuron and then averaged across the entire population at each stage of
the visual hierarchy. We computed skewness with the following equation:

E(x— p)’

o3

Skewness = (2.6)

And we computed kurtosis as follows:
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E(x— w)'

Kurtosis = 7l
o

2.7)

Finally, we measured separation between stimuli using the Fisher dis-
criminant ratio (FDR), defined as the variance between classes (0petyeen) di-
vided by the variance within classes (oinin) (Chen, 2020):

Tt
et weern
FDR = —tdween (2.8)

O within

To examine how the early visual cortex achieves representational untan-
gling, linear decoder weights were averaged for each neuron across all pos-
sible binary decisions, 25!% = 45, after taking the absolute value. Then a
Pearson correlation was computed between each neuron’s average weight
and its skewness, kurtosis, or FDR.

We estimated the dimensionality of neural representations using the par-

ticipation ratio (Gao et al., 2017), where A represents the eigenvalues:

(27

Participation ratio = . (2.9)

242

We also defined a novel measure called “coding dimensionality,” which
describes the number of linear dimensions needed to separate object
classes rather than measuring the variation within classes. To compute
this measure, we applied an equation similar to the participation ratio but
based on the Fisher discriminant ratios (FDR) instead of the eigenvalues.
We calculate coding dimensionality as follows:

(3. FDR)?

Coding dimensionality = S FDRZ "

(2.10)

3 Results

In this study, we investigated object recognition using a simulated model
of the early visual cortex and two data sets: numerals (MNIST) and objects
(CIFAR-10). Briefly, we used linear classifiers to decode stimuli at each level
of the visual hierarchy. Then we measured various characteristics of the
neural representations, including skewness, kurtosis, and dimensionality,
to better understand the mechanism behind object recognition. Finally, we
correlated these measures with linear decoder weights to see which features
better separate different object categories.

3.1 Simulated Complex Cells Perform Representational Untangling
of Object Categories. We hypothesized that the complex cells make
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Figure 3: Simulated complex cells improve linear decoding of stimulus iden-
tity. (A) LDA visualization of complex cell neural activations for different hand-
drawn digits and linear decision boundaries. Here, each circle represents a stim-
ulus, and the color represents a class. The gray planes depict linear decision
boundaries. (B) Training set decoding accuracy. The linear decoding accuracy
in the four different levels of the early visual system hierarchy. Complex cells
have higher training accuracy than previous stages of the simulated visual hi-
erarchy on numerals (left) and objects (right). (C) Test set decoding accuracy,
by level. Complex cells have higher testing accuracy than previous stages of
the simulated visual hierarchy on numerals (left) and objects (right). Here, each
circle represents a model. As before, black represents retina, dark purple repre-
sents LGN, light purple represents simple cells, and orange represents complex
cells.

different classes more linearly separable than they are on the retina, per-
forming the first steps of object recognition. We tested this hypothesis by
linearly decoding stimulus identity based on the simulated activations of
retina, LGN, simple cells, and complex cells (see Figure 3). We also included
a combined population of simple and complex cells to see if this resulted
in a higher accuracy than either one alone. Our data showed that complex
cells perform best at separating both drawn digits and natural images in
the training and testing data sets (see Figures 3B and 3C). Specifically,
in the numerals data set, complex cells had significantly higher training
accuracies than the retina (one-way ANOVA, p = 9.96 x 107!, post hoc
two-sample t-test with Bonferroni correction, p = 1.32 x 10~°!), LGN
(p = 9.45 x 1075¢), and simple cells (p = 1.71 x 10752), but lower accuracy
than a combined population of both simple and complex cells (p = 1.49
x 10719). Likewise, in the objects data set, complex cells had significantly
higher accuracy than the retina (one-way ANOVA, p = 1.29 x 10~%, post
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hoc two-sample t-test with Bonferroni correction, p = 1.00 x 10-%%), LGN
(p = 2.71 x 107%), and simple cells (p = 1.51 x 107%), but no significant
difference from a population of both simple and complex cells (p = 0.35),
indicating that they had similar accuracies.

Here, complex cells may have had higher accuracy because they were
overfitting the training data set. To test this, we examined their accuracy on
the held-out test set but found similar results. For the numerals data set,
complex cells had significantly higher test accuracy than the retina (one-
way ANOVA, p = 4.09 x 1071%, post hoc two-sample t-test with Bonferroni
correction, p = 6.38 x 107%2), LGN (p = 9.95 x 10~%), and simple cells (p =
2.68 x 107%2), but significantly lower test accuracy than a combined popula-
tion of both simple and complex cells (p = 3.22 x 10~%). Meanwhile, in the
objects data set, complex cells had significantly higher test accuracy than
the retina (one-way ANOVA, p = 3.13 x 107'%, post hoc two-sample t-test
with Bonferroni correction, p = 1.66 x 10~*), LGN (p = 1.23 x 10~%), and
simple cells (p = 4.64 x 107%), but did not differ from a population of both
simple and complex cells (p = 0.67), indicating that they had similar test
accuracy. See supplemental Figure 1 for results with different forms of nor-
malization, supplemental Figure 2 for results with different nonlinearities,
and supplemental Figure 3 for results with different linear classifiers.

Overall, simulated complex cells showed superior performance in sep-
arating both drawn digits and natural images in both training and testing
data, suggesting that the early visual cortex performs the first stages of un-
tangling the manifold of natural images. This untangling process mirrors
the kernel trick in machine learning, which adds nonlinear dimensions to
make classes more linearly separable than they are in the input data. No-
tably, training and testing accuracy does not steadily increase as we move
up the visual hierarchy. Instead, we observe a plateau followed by a sud-
den improvement with complex cells. We also find differences between the
two data sets. Linear decoders achieved significantly higher accuracy for
numerals than objects, highlighting the relative ease of decoding numer-
als over natural objects. In addition, in the numerals data set, a combined
population of simple and complex cells performs better than complex cells
alone, indicating that the exact position of an edge can be used to decode
the hand-drawn digit. This is not the case for natural images, where a com-
bined population of simulated simple and complex cells has no additional
advantage over complex cells alone. This indicates that the precise location
of an edge did not improve stimulus decoding in the objects data set; in-
stead, the same object can appear in different locations in each image, better
mimicking natural stimuli.

3.2 Simulated Complex Cells Increase the Skewness and Sparseness
of Neural Representations. We have shown that a model of the early
visual system performs “representational untangling” by grouping sim-
ilar stimuli together and separating different stimuli. To understand the
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mechanism behind this representational untangling, we examined two
measures of stimulus selectivity across the visual hierarchy: skewness
and kurtosis. Skewness is known to result from biologically plausible
learning rules such as the Bienenstock-Cooper-Munro theory (BCM; Blais
et al., 1998). Meanwhile, sparse filtering on natural images generates edge-
detectors that look remarkably like V1 simple cells (Bell & Sejnowski, 1995,
1997; Olshausen & Field, 1997). Sparse distributions mean that neurons
have low activations for most stimuli but unusually high values for a
small subset of stimuli. This results in a heavily “tailed” distribution in
the neural representation, which can be measured by the kurtosis of the
distribution.

To examine if skewness or kurtosis contributes to representational
untangling, we measured both at each stage of the simulated visual hier-
archy. We find that complex cells have greater skewness and kurtosis than
previous levels of the hierarchy, providing a potential explanation for how
they better separate object categories (see Figures 4C and 4D). Specifically,
in the numerals data set, complex cells had significantly higher skewness
than LGN (one-way ANOVA, p = 3.84 x 107%, post hoc two-sample t-test
with Bonferroni correction, p = 5.66 x 107%%) and simple cells (p = 6.00 x
107%), but lower skewness than the retina (p = 3.82 x 10~°2). Meanwhile,
in the objects data set, complex cells had significantly higher skewness
than the retina (one-way ANOVA, p = 4.51 x 107'%, post hoc two-sample
t-test with Bonferroni correction, p = 4.36 x 107%2), LGN cells (p = 1.49
x 1071%), and simple cells (p = 6.88 x 10~®). Similarly, we found that
complex cells have significantly higher kurtosis than previous stages of the
visual hierarchy. In the numerals data set, complex cells had significantly
higher kurtosis than LGN (one-way ANOVA, p = 1.33 x 1071, post hoc
two-sample t-test with Bonferroni correction, p = 1.92 x 10-%) and simple
cells (p = 2.14 x 10~%), but lower kurtosis than the retina (3.21 x 1074).
Similarly, in the objects data set, complex cells had significantly higher
kurtosis than the retina (one-way ANOVA, p = 4.10 x 107!%°, post hoc
two-sample t-test with Bonferroni correction, p = 9.21 x 10-%7), LGN cells
(p = 6.12 x 1077), and simple cells (p = 2.49 x 107%). See supplemental
Figure 4 for results with different forms of normalization and supplemental
Figure 5 for results with different nonlinearities.

Here we notice an important difference between the two data sets,
numerals and objects. Numerals consist of black and white pixels, resulting
in high skewness and kurtosis in their retinal activations, exceeding even
complex cells. Meanwhile, objects have lower skewness and kurtosis in
their retinal activations, better reflecting the statistics of natural images.
Nevertheless, with the exception of retina, we still find consistent results
between the two data sets, where complex cells have greater skewness and
kurtosis than LGN and simple cells. This provides a potential explanation
for how complex cells better separate object categories.
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Figure 4: Simulated complex cells increase skewness and sparseness. (A) Ex-
ample LGN activations for a hand-drawn “0” from the numerals data set. (B)
Distribution of activations at different stages of the simulated visual hierarchy
for numerals (left) and objects (right). (C) Left: Example of a skewed distribution
(red) compared with a normal distribution (black). Complex cells have greater
skewness than other stages of the simulated visual hierarchy for numerals (cen-
ter) and objects (right). (D) Left: Example of a distribution with high kurtosis
(red) compared with a normal distribution (black). Complex cells have greater
kurtosis than other stages of the simulated visual hierarchy for numerals (cen-
ter) and objects (right). Here, black represents retina, dark purple represents
LGN, light purple represents simple cells, and orange represents complex cells.
Each dot represents the average skewness or kurtosis across all cells in each
model.

4.3 Skewness and Sparseness Do Not Contribute to Representational
Untangling of Object Categories. To test if skewness and kurtosis con-
tribute to representational untangling, we examined if linear decoders tend
to emphasize neurons with high skewness, sparseness, or FDR, resulting in
higher weights on those neurons. We correlated each neuron’s skewness,
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Figure 5: Skewness and sparseness did not contribute to linear decoding of
stimulus identity. (A) Left: Example correlation between decoder weights and
activation skewness for complex cells on numerals. Here, each dot represents an
input neuron. Skewness had weakly positive correlations with linear decoder
weights for numerals (center) but nonsignificant correlations for objects (right).
Here, each dot represents a model. (B) Left: Example correlation between de-
coder weights and activation kurtosis for complex cells on numerals. Here, each
dot represents a neuron. Kurtosis had nonsignificant or negative correlations
with linear decoder weights for numerals (center) and objects (right). (C) Left:
Example correlation between decoder weights and FDR for complex cells on nu-
merals. Here, each dot represents a neuron. FDR had strong positive correlations
with linear decoder weights for numerals (center) and objects (right). Here, each
dot represents a model. Black represents retina, dark purple represents LGN,
light purple represents simple cells, and orange represents complex cells.

sparseness, and FDR with the magnitude of their corresponding linear
decoder weight (see Figure 5, left column). Here, we generally found
weak or nonsignificant correlations between skewness/sparseness and
decoder weights, suggesting that the brain does not use skewed or sparse
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representations to solve object recognition (see Figures 5A and 5B). In
particular, for the numerals data set, we found weakly positive correlations
between decoder weights and skewness for the retina (R = 0.40, p = 1.33
x 1071€), LGN (R = 0.31, p = 1.14 x 1071), simple cells (R = 0.21, p = 2.38
x 10~) and complex cells (R = 0.12, p = 4.28 x 10~*). Meanwhile, for the
objects data set, all correlations between decoder weights and skewness
were weakly positive for simple cells (R = 0.071, p = 5.47 x 107%) but
nonsignificant for retina (R = —0.035, p = 0.88), LGN (R = 0.068, p = 0.12)
and complex cells (R = 0.010, p = 1).

We believe that these weak or nonsignificant correlations, especially
on the objects data set, indicate that skewness does not play a central
role in representational untangling. Similarly, correlations between decoder
weights and kurtosis were nonsignificant or negative. For the numerals
data set, correlations between decoder weights and kurtosis were signifi-
cantly negative for the retina (R = —0.33,p =2.78 x 1071%), LGN (R = —0.24,
p = 2.37 x 10712), simple cells (R = —0.13, p = 1.07 x 107°), and complex
cells(R=-0.16,p=3.71 x 10~°). Meanwhile, in the objects data set, correla-
tions between decoder weights and kurtosis were nonsignificant for retina
(R =0.052, p = 0.073) and complex cells (R = 0.026, p = 1) but significantly
negative for LGN (R = —0.067, p = 0.032) and simple cells (R = —0.082,
p =0.012). Overall, we generally found weak or nonsignificant correlations
between decoder weights and skewness/kurtosis, indicating that the brain
does not use skewed or sparse representations to solve object recognition.
If anything, linear decoders tended to use neurons with low kurtosis.

Finally, we correlated decoder weights with neurons” Fisher discrim-
inant ratio (FDR), which measures separation between different classes
(Chen, 2020). This analysis yielded high correlations in both data sets (see
Figure 5C). Specifically, in the numerals data set, we found significantly pos-
itive correlations for the retina (R = 0.77, p = 4.76 x 107%!), LGN (R = 0.67,
p =447 x 1073, simple cells (R = 0.51, p = 1.55 x 10~%), and complex cells
(R =050, p = 5.18 x 10~?). Likewise, for the objects data set, correlations
with FDR were significantly positive for LGN (R = 0.47, p = 6.78 x 1072),
simple cells (R =0.59, p = 1.03 x 1072), and complex cells (R = 0.61, p = 9.87
x 107?%) but nonsignificant for retina (R = —0.0078, p = 1). Therefore, rather
than emphasizing skewness or kurtosis, we found that linear decoders
predominantly emphasized neurons with high stimulus separation as mea-
sured by FDR. See supplemental Figure 6 for results with different forms of
normalization, supplemental Figure 7 for results with different nonlineari-
ties, and supplemental Figure 8 for correlations with max weights. Finally,
see supplemental Figure 8 for a causal analysis that compares decoding
accuracy between high and low skewness/kurtosi/FDR subpopulations.

4.4 Simulated Complex Cells Condense Information into a Low-
Dimensional Representation. Finally, we aimed to test the hypothesis that
the brain uses high-dimensional representations to better untangle natural
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Figure 6: Simulated complex cells reduce total dimensionality of neural repre-
sentations. (A) Schematic depicting increasing dimensionality of a neural repre-
sentation. (B) Left: Schematic depicting eigenspectra for a low-dimensional and
high-dimensional neural representations. Complex cells reduce total dimen-
sionality for numerals (center) and objects (right). (C). Left: Schematic depicting
linear discriminants for low-dimensional and high-dimensional neural repre-
sentations. Complex cells increase coding dimensionality for numerals (center)
but reduce it for objects (right), reflecting a difference between hand-drawn dig-
its and natural images. Here, black represents retina, dark purple represents
LGN, light purple represents simple cells and orange represents complex cells.

images (see Figure 6A). Prior work has shown that high-dimensional rep-
resentations permit more possible decision boundaries, making them more
adept than low-dimensional representations at separating different stimuli
(Bernardi et al., 2020; Fusi et al., 2016).

To test this idea, we examined the dimensionality of neural representa-
tions at different stages of the simulated visual hierarchy. We used the par-
ticipation ratio method (see equation 2.9) to approximate the linear dimen-
sionality of representations in the retina, LGN, simple cells, and complex
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cells. We also included a combined population of simple cells and complex
cells. We found a steady decrease in the dimensionality of the neural code as
we move up the simulated visual hierarchy (see Figure 6B). In particular, for
the numerals data set, complex cells had significantly lower dimensionality
than the retina (one-way ANOVA, p = 5.02 x 10772, post hoc two-sample
t-test with Bonferroni correction, p = 3.84 x 10732), LGN cells (p = 6.65 x
10~%), simple cells (p = 2.30 x 107%’), and a combined population of both
simple and complex cells (p = 6.96 x 1072%). Similarly, for the objects data
set, complex cells had significantly lower dimensionality than LGN (one-
way ANOVA, p = 1.65 x 10778, post hoc two-sample t-test with Bonferroni
correction, p = 1.90 x 1072"), simple cells (p = 1.84 x 10-2*), and a combined
population of both simple and complex cells (p = 3.07 x 10~2!), but higher
dimensionality than retina (p = 1.02 x 10722). The objects data set may have
an artificially low dimensionality in the retina due to the effect of bright-
ness, which dominates the first principal component of natural images.

Meanwhile, we also defined a novel measure, coding dimensionality (see
equation 2.10), which describes the number of dimensions needed to sepa-
rate object classes. Here, we find mixed results, with complex cells increas-
ing coding dimensionality for numerals but decreasing it for objects (see
Figure 6C). Specifically, for numerals, complex cells had significantly higher
coding dimensionality than the retina (one-way ANOVA, p = 6.96 x 1072,
post hoc two-sample t-test with Bonferroni correction, p = 1.51 x 10-12),
LGN (p = 1.92 x 1077), and simple cells (p = 3.85 x 10~7), but no significant
difference from a combined population of both simple and complex cells
(p = 1). However, for the objects data set, complex cells showed lower di-
mensionality than the retina (one-way ANOVA, p = 1.68 x 10~%%, post hoc
t-test with Bonferroni correction, p = 3.50 x 1071%), LGN (p = 2.40 x 10713),
simple cells (p = 5.23 x 10~'), but higher dimensionality than a population
of both simple cells and complex cells (p = 6.07 x 107%). Although unex-
pected, we confirmed these findings with several supplemental analyses
(not shown). This discrepancy between the two data sets in the complex
cell dimensionality likely reflects the difference between written characters
and natural images. See supplemental Figure 10 for results with different
forms of normalization and supplemental Figure 11 for results with differ-
ent nonlinearities.

4 Discussion

Our findings provide evidence that simulated complex cells play an active
role in object recognition, thereby challenging a prevailing view that ob-
ject recognition is confined to higher visual areas (Conway, 2018; Lueschow
et al., 1994). We find that the simulated complex cells significantly con-
tribute to the representational untangling of object classes, making linear
classification easier on the training data and more robust on the test data.
Although our simulated complex cells continue to have a limited accuracy
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in linear classification of natural images (~35%), this is still significantly
better than the accuracy at earlier stages of the visual hierarchy such as
the retina, LGN, and simple cells (Gaspar et al., 2019) (~30%) (see Figure
3C). We can imagine that by repeating this process of nonlinear transfor-
mations throughout the visual hierarchy, we could achieve human-level
performance on object recognition by the time we reach it (Conway, 2018;
DiCarlo & Cox, 2007; Lueschow et al., 1994).

We further explored the mechanisms behind this untangling process,
challenging prior hypotheses that it relies on skewed, sparse, or high-
dimensional representations (Albesa-Gonzalez et al., 2022; Bernardi et al.,
2020; Blais et al., 1998; Olshausen & Field, 1997). While simulated complex
cells displayed increased skewness and sparseness compared to earlier
stages of the visual hierarchy, our linear decoder analysis generally re-
vealed no strong preference for these attributes, suggesting that they do
not contribute significantly to object recognition.

One might hypothesize that simulated complex cells improve linear de-
coding by increasing the dimensionality of the neural code, permitting more
possible decision boundaries (see Figure 7A; Fusi et al., 2016). Contrary to
this hypothesis, our findings show that the simulated visual hierarchy does
not systematically add dimensions to our neural representations but instead
condenses visual information into a low-dimensional, yet untangled neural
code. We find that the final stage of our model, complex cells, has lower di-
mensionality than any previous stage of the visual hierarchy (see Figure 7B).
Crucially, this may provide an inductive bias for the visual system (Goyal &
Bengio, 2022). Perhaps the brain does not carry all information forward to
higher visual areas. Instead, it only sends more abstract information about
orientation content while dropping detailed information about specific
locations and pixels. This would mean that the brain does not aim to “shat-
ter dimensionality” (Bernardi et al., 2020) in the sense of distinguishing
between every possible pair of stimuli. Instead, it only aims to distinguish
between abstract patterns like two different objects rather than detailed
patterns like two images of white noise. This possible inductive bias may
enable the brain to learn faster and with fewer data. Low-dimensional
representations have also been hypothesized to improve generalization
and require fewer neural resources (Bernardi et al., 2020; Boyle et al.,
2024). Thus, the visual system strikes a balance between representational
untangling and computational efficiency, achieving a best-of-both-worlds
scenario.

We acknowledge several limitations in this study, including the use of
an idealized model, highly curated data sets, and a specific visual task. Al-
though our model is based on biological data, it leaves out many biologi-
cal variables, including the distinction between excitatory and inhibitory
cells, the influence of neurotransmitters and neuromodulators, feedback
connections from higher cortical areas, and plasticity over time (Duncan,
2002; Jedlicka, 2002; Juan & Walsh, 2003; King et al., 2013). Exploring these
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Figure 7: Simulated complex cells simultaneously untangle representations
and condense dimensionality. (A) Schematic showing how high-dimensional
representations permit more possible decision boundaries, making them use-
ful for a wide variety of tasks. (B) Schematic summarizing our findings: the
visual system compresses information into a low-dimensional representation
while also untangling it for object recognition. Throughout, each dot represents
a stimulus.

elements could reveal additional aspects of representational untangling in
the early visual cortex. For example, feedback from higher visual areas
or synaptic plasticity may preferentially enhance task-relevant visual fea-
tures that differentiate object classes. Furthermore, this study used a highly
curated data set that lacks the variability of natural scenes such as noise
and object occlusion (Gong et al., 2023). Future research could use dynamic
videos and multisensory environments to better capture the richness of real-
world perception. Third, our image classification task does not explore the
diversity of tasks for which vision is used (Zador et al., 2023). For exam-
ple, we may use visual data to navigate through an environment or read a
friend’s emotions rather than just identifying semantically relevant objects.
Future work can investigate how representational untangling functions
outside object recognition, such as navigation and multisensory integration.
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Finally, it will be important to examine how representational untangling
continues in higher areas like V4 and IT. We hypothesize that representa-
tional untangling will steadily continue up the hierarchy until it reaches
human behavioral performance in IT. Furthermore, while this study exam-
ines how stimulus decoding and computational efficiency are combined in
the brain, these findings may equally inform the design of artificial net-
works, which face similar demands. Specifically, our findings suggest that
compressing information in early processing can lead to improved perfor-
mance. Thus, our findings may reflect a more general principle spanning
both artificial and biological networks.
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